Μετατροπή Γωνιακή επιτάχυνση
Με αυτήν την αριθμομηχανή είναι δυνατή η εισαγωγή της τιμής που πρέπει να μετατραπεί μαζί με την αρχική μονάδα μέτρησης. Για παράδειγμα, '367 rad/s2'. Έτσι, μπορεί να χρησιμοποιηθεί είτε το πλήρες όνομα της μονάδας, είτε η συντομογραφία της Στη συνέχεια, ο υπολογιστής προσδιορίζει την κατηγορία της μονάδας μέτρησης που πρόκειται να μετατραπεί, σε αυτήν την περίπτωση 'Γωνιακή επιτάχυνση'. Μετά από αυτό, μετατρέπει την καταχωρημένη τιμή σε όλες τις κατάλληλες μονάδες που αναγνωρίζει. Στη λίστα των αποτελεσμάτων, θα βεβαιωθείτε επίσης στην εύρεση της μετατροπή που αναζητήσατε αρχικά. Ανεξάρτητα από το ποια από αυτές τις δυνατότητες χρησιμοποιεί κάποιος, μπορεί να αποφύγει μια περίπλοκη αναζήτηση για την κατάλληλη λίστα σε μακρές λίστες επιλογών με χιλιάδες κατηγορίες και αμέτρητες υποστηριζόμενες μονάδες. Όλα αυτά αναλαμβάνονται από την αριθμομηχανή μας η οποία τα πραγματοποιεί σε ένα κλάσμα του δευτερολέπτου.
Μαθηματικές συναρτήσεις
Επιπλέον, η αριθμομηχανή καθιστά δυνατή τη χρήση μαθηματικών συναρτήσεων. Επομένως, όχι μόνο οι αριθμοί μπορούν να υπολογίζονται μεταξύ τους, όπως για παράδειγμα '(40 * 43) rad/s2'. Αλλά διαφορετικές μονάδες μέτρησης μπορούν επίσης να συνδυαστούν μεταξύ τους απευθείας στη μετατροπή. Αυτό θα μπορούσε, για παράδειγμα, να μοιάζει με αυτό: '34 rad/s2 + 37 rad/s2' ή '46mm x 49cm x 52dm = ? cm^3'. Οι μονάδες μέτρησης που συνδυάζονται με αυτόν τον τρόπο φυσικά πρέπει να αντιστοιχούν μεταξύ τους και να βγάζουν νόημα στην εν λόγω πράξη.
Μαθηματικές συναρτήσεις
Μπορούν επίσης να χρησιμοποιηθούν οι μαθηματικές συναρτήσεις sin, cos, tan και sqrt. Παράδειγμα: sin(π/2), cos(pi/2), tan(90°), sin(90) ή sqrt(4).
Αριθμοί σε μαθηματική πράξη
Εάν ένα σύμβολο ελέγχου έχει τοποθετηθεί δίπλα στο 'Αριθμοί σε μαθηματική πράξη', το αποτέλεσμα θα εμφανιστεί με εκθετική μορφή. Για παράδειγμα, 8,680 493 748 168 ×1020. Για αυτή τη μορφή εμφάνισης, ο αριθμός θα κατατμηθεί στον εκθέτη, εδώ 20, και στον πραγματικό αριθμό, εδώ 8,680 493 748 168. Για συσκευές στις οποίες οι δυνατότητες εμφάνισης αριθμών στην οθόνη είναι περιορισμένες, όπως για παράδειγμα αριθμομηχανές τσέπης, μπορεί κάποιος να συναντήσει τον τρόπο γραφής των αριθμών ως 8,680 493 748 168 E+20. Συγκεκριμένα, αυτό κάνει τους πολύ μεγάλους και τους πολύ μικρούς αριθμούς ευκολότερους στην ανάγνωση. Εάν δεν έχει τοποθετηθεί ένα σημάδι ελέγχου σε αυτό το σημείο, τότε το αποτέλεσμα δίνεται με τον συνήθη τρόπο εγγραφής των αριθμών. Για το παραπάνω παράδειγμα, τότε θα εμφανιζόταν έτσι: 868 049 374 816 800 000 000. Ανεξάρτητα από την παρουσίαση των αποτελεσμάτων, η μέγιστη ακρίβεια αυτής της αριθμομηχανής είναι 14 ψηφία. Αυτό πρέπει να είναι αρκετά ακριβές για τις περισσότερες εφαρμογές.